
PROJECT SCHEDULING PROBLEMS WITH LINEAR
PROGRAMMING

IRIS XU , TIM LEE , KEVIN JIA , AND ALEX LIN

Abstract. The Project Scheduling Problem (PSP) is a fundamental optimization problem in op-
erations research, where the goal is to determine an optimal schedule for a set of interdependent tasks
while minimizing the total project duration. We focus on formulating the precedence-constrained
PSP as a linear programming (LP) model, ensuring that task dependencies are met while minimizing
overall completion time. We then extend our discussion to the time-cost trade-off problem (TCTP).
In addition, we analyze the sensitivity of the schedule using the dual problem, providing insights into
how changes in task duration impact the optimal makespan. The computational results illustrate
the effectiveness of the LP formulation in optimizing real-world project schedules.

Key words. linear programming, project scheduling, precedence constraints, time-cost trade-off

1. Introduction. Effective project scheduling is essential for optimizing time
management, resource allocation, and overall project efficiency in fields such as con-
struction, manufacturing, software development, and supply chain management. The
Project Scheduling Problem (PSP) aims to determine the optimal start times of tasks
in a project while ensuring that all precedence constraints are satisfied and the total
project duration is well minimized.

This project develops a linear programming (LP) formulation for the precedence-
constrained PSP, where:

• tasks have fixed durations and must be completed once started,
• task execution is subject to precedence constraints: A task cannot begin until
all its prerequisite tasks are completed, and

• simultaneous execution is allowed as long as precedence constraints are met.
We present a specific example with a standard software engineering project workflow,
detailing common tasks, their typical durations, and their order of precedence. We
propose an optimized schedule using our LP formulation for general PSP’s.

Another aspect of project scheduling is the trade-off between time spent and
cost. In many cases, project managers may accelerate certain tasks by allocating
additional resources, a concept known as the time-cost trade-off problem (TCTP).
However, crashing tasks come at an additional cost, making it crucial to find an
optimal balance between minimizing the makespan and controlling necessary costs.
We then extend this LP formulation to generalize the TCTP, allowing tasks to be
crashed at an additional cost per day, and introduce a budget constraint to limit
the total budget on task acceleration. The LP model determines an optimal schedule
that minimizes the total project duration while ensuring that acceleration costs remain
within the allocated budget. In addition, we explore the dual problem, which provides
insight into how each scheduling constraints affect the variability of the solution.

The remainder of this project is structured as:
• presenting the LP formulation for PSP and its mathematical representation
in standard and matrix form.

• providing a computational example, solving the LP model using real-world
project data.

• discussing potential insights through duality analysis on how significant each
task duration is to the makespan

• extending the model to the time-cost trade-off problem (TCTP) and intro-
duces a cost-constrained formulation.

1

2 I. XU, T. LEE, K. JIA, AND A. LIN

This research reveals the effectiveness of linear programming in project scheduling
and provides a practical optimization framework for minimizing project duration while
balancing costs.

2. General Project Scheduling Problem. We use an LP formulation based
on start time to minimize the completion time of a project consisting of n tasks. The
goal is to optimize the project’s makespan (total project duration) while adhering to
precedence constraints.

Notation.
• Si is the start time of task i (decision variable).
• di is the duration of task i (constant, di > 0).
• Cmax is the project makespan (decision variable).

Objective Function. The makespan is equivalent to the completion time of the
final task. We assume that once a task begins, it runs continuously until completion.
Therefore, the completion time of any task i is given by Si + di, where Si is the start
time and di is the duration of task i.

In general, we do not assume that the project has a single final task. Instead,
we use a flexible model that can allow an optimal solution to schedule multiple final
tasks in parallel when those tasks are not prerequisites for any other task. Thus, the
makespan is determined by the latest completion time among all tasks:

Cmax = max(S1 + d1, S2 + d2, . . . , Sn + dn).

To linearize this, we introduce constraints that bound Cmax by all task completion
times:

Cmax ≥ Si + di, ∀i ∈ {1, . . . , n}.

This is equivalent to defining Cmax as the start time of a final dummy task (with
zero duration) that depends on all other tasks. Our objective function is simplified
to minimizing Cmax.

Precedence Constraints. Let P be the set of task dependencies, where each
ordered pair (i, j) ∈ P indicates that task j can start only after task i completes. To
simplify the formulation and prevent cyclic dependencies, we assume task indices fol-
low a topological order, ensuring i < j for all (i, j) ∈ P . These precedence constraints
are expressed as

Sj ≥ Si + di, ∀(i, j) ∈ P.

Non-Negativity Constraints. Start times must be non-negative values, so

Si ≥ 0, ∀i ∈ {1, . . . , n}.

2.1. LP in Standard Form. We convert the original minimization problem to
an equivalent maximization problem in standard form. That is, we want to find the
solution to

Maximize − Cmax

subject to

Si − Cmax ≤ −di, ∀i ∈ {1, . . . , n}(2.1)

Si − Sj ≤ −di, ∀(i, j) ∈ P(2.2)

Si ≥ 0, ∀i ∈ {1, . . . , n}.

PROJECT SCHEDULING PROBLEMS WITH LINEAR PROGRAMMING 3

2.2. Matrix Form. In matrix form, the LP can be written as

Maximize cTx

subject to Ax ≤ b,

x ≥ 0.

where the decision variable vector is

x = (S1, S2, . . . , Sn, Cmax)
T ∈ Rn+1,

and the objective coefficient vector is

c = (0, . . . , 0,−1)T ,

which has zeros everywhere except at the (n+ 1)th position so that cTx = −Cmax.
Letm = |P | be the number of precedence constraints. ThenA is a (n+m)×(n+1)

sparse matrix nonzero entries equal to 1 or −1. The first n rows correspond to
the finish time constraints in (2.1) while the the next m rows correspond to the
general precedence constraints (2.2). We use subscripts to refer to the upper and
lower submatrices as A1:n and An+1:n+m. We have

A1:n =
[
I n −1n

]
.

Recall that I n is the identity matrix and 1n is a column vector of ones. The righthand
side vector b has the corresponding first n values

b1:n = (−d1,−d2, . . . ,−dn)
T .

The task precedence constraints can be encoded by an incidence matrix. LetQP ∈
{−1, 0, 1}m×n be the incidence matrix on the set P . Suppose that the precedence
constraints are indexed so that the kth constraint corresponds to the pair (ik, jk) ∈ P .
Then we define QP by

(QP)k,ℓ =


1, if ℓ = ik,

−1, if ℓ = jk,

0, otherwise.

Thus, each row of QP has a 1 in the column corresponding to the prerequisite task
and a −1 in the column corresponding to the dependent task. In our overall constraint
matrix, these rows are appended as

An+1:n+m =
[
QP 0m

]
,

where 0m is an m× 1 zero vector (since Cmax does not appear in these constraints).
The corresponding entries in b are

bn+1:n+m = (−di1 ,−di2 , . . . ,−dim)T .

2.2.1. Remark on Transitive Reduction and the Structure of the Prece-
dence Constraint Matrix. The number of precedence constraints, m, is upper
bounded by the number of edges in a complete graph on n vertices:

m ≤ n(n− 1)

2
∝ n2.

4 I. XU, T. LEE, K. JIA, AND A. LIN

However, in a directed acyclic graph many of these edges represent transitive rela-
tionships and are therefore redundant in the scheduling problem. For example, in the
set {(1, 2), (2, 3), (1, 3)} the constraint (1, 3) is redundant since it is implied by (1, 2)
and (2, 3).

Although a full treatment of transitive reduction is beyond the scope of this
paper, it is worth noting that applying transitive reduction to a task precedence graph
(see, e.g., Figure 1) eliminates redundant constraints and yields a more economical
representation of the task relationships [1]. In many practical scheduling problems,
where task dependencies are nearly sequential, this process reduces the number of
constraints to m ∝ n. In particular, if the given set of task dependencies is minimal
(i.e., it represents the transitive reduction of the complete dependency graph), then
each column of the corresponding incidence matrix QP contains only the essential
nonzero entries. Moreover, by an appropriate permutation of the rows, these nonzero
entries can be arranged to lie near the main diagonal. Finally, since our problem
formulation enforces i < j for all (i, j) ∈ P , it follows that the resulting precedence
constraint matrix is nearly upper triangular.

2.3. Example Software Engineering PSP. We provide a simple example of
the general project scheduling problem (PSP) that commonly arises in the software
engineering domain. Suppose that a project manager wants to deliver a project in
the shortest possible time. The project consists of an initial task for defining require-
ments, followed by implementation and extensive testing. The project tasks and their
associated durations and dependencies are shown in Table 1.

Task Description Prerequisites Duration
(days)

1 Define project specifications - 10
2 Implement backend architecture 1 17
3 Implement frontend architecture 1 10
4 Implement backend APIs 2 21
5 Implement UI and integrate APIs 3, 4 28
6 Unit testing 4, 5 10
7 Integration testing 6 14
8 Security and performance testing 7 21
9 Write technical and user documentation 5 7
10 Deploy and monitor 8 5

Table 1
A software engineering project might involve these ten tasks.

For this small example of a project with n = 10 tasks, we can easily visualize
the precedence constraints on a graph and find an optimal schedule by inspection. In
an optimal schedule, tasks that do not depend on each other should be completed in
parallel. We follow our LP problem formulation and express the task dependencies as

P = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 6), (6, 7), (7, 8), (5, 9), (8, 10)}

PROJECT SCHEDULING PROBLEMS WITH LINEAR PROGRAMMING 5

and the incident matrix which is a submatrix of our constraint matrix,

QP =



1 −1 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 0 −1


.

2.3.1. Precedence Graph. The precedence graph is a weighted, acyclic, di-
rected graph G = (T, P), where the vertices represent tasks, and each directed edge
(i, j) indicates that task i must be completed before task j begins. The edge is
weighted by the duration di required for task i.

If a valid precedence graph cannot be constructed for the proposed project, that
is, if the graph contains a cycle, then there is no valid schedule that satisfies the
precedence constraints. A simple example of this is the “chicken and egg” problem,
where two tasks depend on each other, creating a circular dependency that cannot be
resolved. For inherently iterative projects, such as software engineering projects with
repeated testing, cycles can be broken by introducing new tasks for each iteration.
This ensures that the precedence graph is acyclic and that the PSP is feasible.

1

2

3

4

5

6 7 8

9

10

End

10

10

17

10

21

21

28

10 14

28

21

7

5

Fig. 1. The precedence graph helps visualize an example of a software engineering PSP. There
is only one possible starting task. There are two possible final tasks, so we introduce a dummy node
to indicate project completion. We can see that some tasks can be scheduled simultaneously, while
others must be completed in sequence.

We set up and solve the example software engineering problem in subsection 2.3
using the scipy.optimize.linprog() function. Let x∗ denote the optimal solution
to our problem in matrix form as described in subsection 2.2. Our solver (see supple-
mentary notebook) finds the optimal start times x∗

j and finish times x∗
j + dj of each

task tj , as well as the minimal makespan −cTx∗. We summarize the optimal solution
in Figure 2.

2.3.2. Dual Problem. Given an LP problem in the matrix form described in
subsection 2.2, consider the corresponding dual problem

6 I. XU, T. LEE, K. JIA, AND A. LIN

Fig. 2. The output of our solver shows the optimal project schedule with the minimum overall
completion time.

Minimize bTy

subject to ATy ≥ c,

y ≥ 0.

where y is the decision variable vector of the dual problem. In the context of our
general project scheduling problem, this would be represented as

y = (y1, y2, . . . , yn+m−1, yn+m)T ∈ Rn+m,

where we recall n is the number of constraints that bound Cmax with task com-
pletion time, and m is the number of task precendence constraints. Therefore there is
one dual variable for each of the n+m constraints in the primal problem (excluding
non-negativity constraints). The objective of the dual would then be to minimize the
function bTy which takes the form

−
n∑

k=1

dkyk −
m∑
l=1

dimyn+l

It follows that the constraint matrix AT is an (n+ 1)× (n+m) matrix where

AT
1:n =

[
In QT

P

]
, AT

n+1 =
[
−1T

n 0T
m

]
Therefore there is a dual constraint for each of the n+1 primal variables, the first

n correponding to each primal dual variable x1, x2, ...xn and the n+1th corresponding
to cmax The first n dual constraints follow the form:

PROJECT SCHEDULING PROBLEMS WITH LINEAR PROGRAMMING 7

yk +

n+m∑
l=k

yiI(k, i) ≥ 0,∀k ∈ {1, 2, . . . , n}

where I(x, y) =


1, if (xy, jy) ∈ P

−1, if (jy, xy) ∈ P

0, otherwise

and j is any task other than x

And the n+ 1th dual constraint is:

n∑
k=1

−yk ≥ −1 =⇒
n∑

k=1

yk ≤ 1

which, together with the non-negativity constraints ensures that the 1st to the nth

dual variables must be in the range [0,1]. Let y∗ denote the optimal solution to the
dual problem. Assuming the primal scheduling problem is a non-trivial problem where
Cmax > 0 at optimality, then by complementary slackness we know

n∑
k=1

y∗k = 1

And for all k ∈ {1, 2,, n}, l ∈ {1, 2,,m}

y∗k ̸= 0 =⇒ Cmax = Sk + dk

and y∗n+l ̸= 0 =⇒ Sjl = Sil + dil

That is,
• the first n dual variables sum to 1 at optimality and
• any kth dual decision variable among the first n which is non-zero at the

optimum would act as an indicator that the kth task is a final task in the
optimal schedule.

• any lth dual decision variable among the remaining m that are non-zero at
the optimum would act as an indicator that for the tasks involved in the lth

precedence constraint, (il, jl) ∈ P , the subsequent task begins immediately
after the prerequisite task in the optimal schedule

Let us consider the “shadow price” interpretation of the dual variable. Optimal value
of dual variable y∗k represents the rate of increase in the primal optimal objective
value with respect to increase in the right hand side of the corresponding kth primal
constraint, in standard form. In the standard form of the primal, the RHS of the con-
straints, b, consists of negated task durations. Similarly, since the primal problem is
framed in the form of a maximization problem the objective value at optimality, cTx∗,
would be the negated value of the optimal timespan. Therefore, each optimal dual
variable value can be interpreted as the decrease in optimal project duration upon
decreasing the duration of the preceding task in the associated primal constraint by
one unit.

8 I. XU, T. LEE, K. JIA, AND A. LIN

We reason that at optimality all dual variables y∗i ∈ {0, 1}. We omit a formal proof
of this statement, but by intuition: either a corresponding constraint is binding and
decreasing the associated task duration directly decreases the overall makespan, or the
corresponding constraint is not binding and decreasing the associated task duration
will not decrease the overall makespan. Since the first n dual variables sum to 1, there
must be a single y∗k = 1, k ∈ {1, 2, ...n}, which corresponds to the makespan constraint
associated with the final task. It follows that any yn+l = 1, l ∈ {1, 2, ...m} would
correspond to the precedence constraint associated with an immediately preceding
prerequisite task. We signify this sequence of continuous prerequisite tasks as the
critical path. This would be represented as the longest path from the starting node
to the end node in the precedence graph. Thus, the dual variables at optimality
indicate critical tasks, which for the purpose of project streamlining and task cutting,
is valuable. We will later discuss the importance of the critical path involved in the
TCTP problem.

3. Discussion on PSP Variations. We summarize some variations in project
scheduling problems [4] below.

Temporal Constraints. Temporal constraints extend the basic precedence re-
lationships and include:

• Task or milestone deadlines: Fixed dates by which certain tasks or mile-
stones must be completed.

• Time windows: Restrictions that limit the allowable start and finish times
for tasks.

• Lag or rest times: Minimum time intervals required between the completion
of one task and the start of another.

For problems defined over a continuous time domain, these constraints can often be
modeled using linear programming. However, time window constraints typically lead
to event-based formulations [7] that require binary variables.

Resource Constraints. In many projects, tasks compete for limited resources.
These resource restrictions can take various forms, such as constraining the number
of tasks that can be executed simultaneously due to the availability of personnel,
equipment, or budget. Resources can be renewable or non-renewable and can take
on continuous or discrete values, or a mix of both. Models incorporating such con-
straints are typically more complex and are classified as resource-constrained project
scheduling problems (RCPSP). These models often use mixed-integer programming
for optimization [2]. We mention this concept only briefly because it is beyond the
scope of this paper.

Objectives. Scheduling objectives vary depending on the context, but generally
focus on minimizing some measure of cost. Common objectives include:

• Project makespan: Reducing the total time required to complete all tasks,
often combined with other goals.

• Tardiness: Reducing the difference in task start times and their release
times. This models the preference for beginning tasks as early as possible.

• Lateness: Reducing the penalty associated with completing tasks after their
deadline. This models the preference for completing tasks as early as possible,
assuming that there is no penalty for completing tasks too early.

In many real-world scenarios, these objectives are combined into a weighted multi-
objective formulation, where each weight sets the relative importance of the corre-
sponding objective. (3.2) is an example of this.

PROJECT SCHEDULING PROBLEMS WITH LINEAR PROGRAMMING 9

3.1. Time-Cost Trade-Off Problem. Consider a project in which certain
tasks can be accelerated at an additional cost. For example, in the software engi-
neering project example in subsection 2.3, suppose that the project manager hires a
freelancer to help with tasks. In particular, assume that implementing the UI and
integrating APIs can be shortened from 28 days to a minimum duration of 14 days.
This process of reducing task duration from its normal time to its minimum (crashed)
time is known as crashing or project crashing and can be approached using different
techniques [5, 6, 3]. However, since the freelancer is paid $500 per day and the project
has a fixed budget, the challenge lies in determining the optimal schedule. The goal
is to minimize the project makespan while staying within budget. This inverse rela-
tionship between time and cost is known as the time-cost trade-off problem (TCTP),
as reducing task durations typically incurs higher costs.

We can formulate an LP model for the continuous TCTP by modifying that
for the general precedence-constrained PSP presented in section 2. In addition to
finding optimal task start times, we introduce decision variables to represent the time
reduction for each task. We define constants for the normal and crashed durations of
each task, as well as the cost per unit of time to accelerate them (crashing cost) and
a total budget.

Definition and Notation.
• Si is the start time of task i (decision variable).
• dni is the normal duration of task i (constant, dni > 0).
• dci is the crashed duration of task i (constant, dci > 0).
• ci is the crashing cost per unit time of task i (constant, ci ≥ 0),
• xi is the time reduction (decision variable),
• Cmax is the project makespan (decision variable),
• B is the total budget for the project (constant, B ≥ 0).

The actual duration of task i is given by

(3.1) di = dni − xi.

A flexible objective is to minimize a weighted sum of the project makespan and the
total crashing cost:

(3.2) αCmax +

n∑
i=1

ci xi,

where α is a positive weighting constant that balances the trade-off. A higher value
α places more importance on optimizing the makespan.

10 I. XU, T. LEE, K. JIA, AND A. LIN

Similarly to subsection 2.1, we formulate the linear program in standard form:

Maximize − αCmax −

(
n∑

i=1

ci xi

)
subject to

Si − Cmax − xi ≤ −dni , ∀i ∈ {1, . . . , n}(3.3)

Si − Sj − xi ≤ −dni , ∀(i, j) ∈ P(3.4)

xi ≤ dni − dci , ∀i ∈ {1, . . . , n},(3.5)
n∑

i=1

ci xi ≤ B,(3.6)

Si ≥ 0, ∀i ∈ {1, . . . , n},
xi ≥ 0, ∀i ∈ {1, . . . , n}.

Constraints (3.3) and (3.4) are identical to the constraints (2.1) and (2.2), respectively.
They enforce the precedence relationships defined in P and with the final dummy task.
The main differences are that we substitute di with its equivalent expression from (3.1)
in terms of the time reduction decision variables and add the new constraints in (3.5)
so that the actual task durations remain within the range defined by their normal
and crashed durations. Constraint (3.6) enforces a hard limit on the budget, but
depending on the value of α, this constraint may not be binding.

Task Normal duration Crash duration Cost per day
(days) (days) (CAD)

1 10 9 150
2 17 11 490
3 10 6 300
4 21 15 530
5 28 14 500
6 10 7 260
7 14 10 320
8 21 16 750
9 7 4 100
10 5 3 250

Table 2
Tasks in the software engineering project example in Table 1 can now be accelerated at an

additional cost. A higher project budget will allow for more flexibility in reducing task durations,
thereby helping to minimize the total project completion time.

4. Conclusions. We have detailed a widely studied area in operations research,
project scheduling problem, initially based on three standard conditions:

• a task cannot be commenced until its prerequisites are completed
• tasks take a fixed duration to complete, and cannot be interrupted or progress
in an interleaved manner

• multiple tasks can progress simultaneously as long as prerequisite constraints
are complete

with the goal being to minimize the total completion time of tasks. We generate a list
of tasks, durations, and precedences involved a software engineering project. Then

PROJECT SCHEDULING PROBLEMS WITH LINEAR PROGRAMMING 11

we formulate the project as an LP problem in our solver and determine optimal start
times of each task.

We demonstrate that the solutions to the dual problem provides valuable infor-
mation on constraints and tasks in the primal scheduling problem, such as which
task durations are lengthening the overall completion time and to what degree. We
also consider substantiating the scheduling problem to a time-cost trade-off problem,
where we add nuances:

• the duration of a task can be shortened for a cost
• budget for task shortening is limited

for which the goal is to minimize a weighted sum of the makespan and amount spent.
We generalize the TCTP as an LP problem and generate another software engineer
project task list now containing crashed durations and crashing costs. It is expected
that only crashing tasks in the critical path, the longest path in the precedence graph,
can achieve a reduction in the makespan. These tasks correspond to the binding
constraints. We leave the solving of this modified problem for future discussion.

REFERENCES

[1] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph,
SIAM Journal on Computing, 1 (1972), pp. 131–137.

[2] C. Artigues, S. Demassey, E. Neron, and W. O. Library, Resource-constrained project
scheduling: models, algorithms, extensions and applications, John Wiley Sons, Hoboken,
NJ, 1st;1; ed., 2008;2010;2013;.

[3] O. Elmabrouk and F. Aljiebali, Crashing project activities using linear programming tech-
nique, in Proceedings of the International Conference on Industrial Engineering and Oper-
ations Management. Turkey, 2012.

[4] S. Hartmann and D. Briskorn, An updated survey of variants and extensions of the resource-
constrained project scheduling problem, European Journal of Operational Research, 297
(2022), pp. 1–14, https://doi.org/https://doi.org/10.1016/j.ejor.2021.05.004, https://www.
sciencedirect.com/science/article/pii/S0377221721003982.

[5] N. S. Islam, Complex project crashing algorithm, IOSR Journal of Business and Management
(IOSR-JBM), 11 (2013), pp. 10–17.

[6] A. Katti and M. Darade, Project crashing to solve time-cost trade-off, International Journal
of Civil Engineering, 3 (2016), pp. 10–27.

[7] O. Koné, C. Artigues, P. Lopez, and M. Mongeau, Event-based milp models for resource-
constrained project scheduling problems, Computers & Operations Research, 38 (2011),
pp. 3–13.

https://doi.org/https://doi.org/10.1016/j.ejor.2021.05.004
https://www.sciencedirect.com/science/article/pii/S0377221721003982
https://www.sciencedirect.com/science/article/pii/S0377221721003982

	Introduction
	General Project Scheduling Problem
	LP in Standard Form
	Matrix Form
	Remark on Transitive Reduction and the Structure of the Precedence Constraint Matrix

	Example Software Engineering PSP
	Precedence Graph
	Dual Problem

	Discussion on PSP Variations
	Time-Cost Trade-Off Problem

	Conclusions
	References

